A New Quassinoid from Ailanthus vilmoriniana

Koichi Takeya, Hideyuki Kobata, Akira Ozeki, Hiroshi Morita, and Hideji Itokawa*

Department of Pharmacognosy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Received January 29, 1997[®]

A new quassinoid, vilmorinine A (1), has been isolated from the cortex of *Ailanthus vilmoriniana*. The structure and conformation in the solid and solution states were elucidated by spectroscopic methods, X-ray analysis, and a computational chemical method.

The structures and antileukemic activity of various kinds of quassinoids isolated from *Eurycoma longifolia*¹⁻⁴ and *Brucea mollis*⁵ (Simaroubaceae) have already been reported. During our survey of novel antileukemic compounds from higher plants, the crude extract of *Ailan-thus vilmoriniana* Dode (Simaroubaceae) showed cytotoxic activity. Chromatographic purification of this extract led to the isolation of a new quassinoid, which we named vilmorinine A (1). This paper deals with the structure elucidation of 1 using high-field NMR methods, computational simulation study, and X-ray analysis.

The methanolic extract of the cortex of *A. vilmorini*ana was partitioned between CH_2Cl_2 and H_2O . The CH_2Cl_2 -soluble material was subjected to silica gel column chromatography (CH_2Cl_2 -MeOH and *n*-Hex-AcOEt) followed by HPLC on ODS (MeOH-H₂O) to yield a new quassinoid, vilmorinine A (**1**: 0.000 33%).

Vilmorinine A (1), colorless needles (MeOH), mp 218– 221 °C, $[\alpha]^{20}_{\rm D}$ +29.3° (*c* 0.29, MeOH), showed a molecular formula of C₂₀H₂₄O₉, which was permitted by the HREIMS spectrum. The IR (1680 and 1760 cm⁻¹) and UV (242 nm) spectra indicated the presence of an α,β unsaturated ketone and a γ -lactone. In the ¹H NMR spectrum, the presence of three methyl groups (δ 1.32, 1.65, and 1.73), an α -proton (δ 5.88) attached to the α,β unsaturated ketone group, lactonic methylene (δ 4.41 and 4.73), and a proton (δ 5.07) attached to the oxygenbearing carbon was observed. In the ¹³C NMR spectrum, four carbonyl carbon signals (δ 176.22, 177.51, 178.54, and 192.57) and an acetal carbon signal (δ 94.90) were observed.

Using a combination of homo- and heteronuclear twodimensional NMR techniques (${}^{1}H{-}{}^{1}H$ COSY, HMQC, and HMBC spectra), complete assignments of the ${}^{1}H$ and ${}^{13}C$ signals of **1** were successfully performed (Table 1). HMBC correlation between H-7 and C-1, indicating an ether linkage between C-1 and C-7, was observed. On the other hand, an unusual NOE enhancement between H-5 and H-19, which is not observed in the normal picrasan skeleton, was observed, suggesting that the ring junction is *cis* for A/B. A consideration of these spectroscopic data including NOE and HMBC correlations (Figure 1) resulted in a 1,7-epoxy and 11,12-seco derivative for the structure of **1**. The relative stereostructure at C-13 and C-14 was deduced to be as in Figure 1 by NOE correlations between H-13 and H-7, between H-21 and H-15 β , between H-14 and H-9, and between H-14 and H-13.

The structure of **1** was verified by single-crystal X-ray diffraction study, and a stereoscopic view of ORTEP drawing was shown in Figure 2.

Furthermore, to obtain the stable rotamers of side chain at C-8 in the solution state and verify the configurations at C-13 and C-14, systematic pseudo Monte Carlo simulation⁶ using the MM2^{*} force field implemented in MacroModel Bachmin (ver 4.5)⁷ followed by molecular mechanics calculations were conducted. The produced conformers whose energy level was within a range of 2 kcal/mol of the global minimum were further performed by the semiempirical molecular orbital calculation using the PM3 method.⁸ The 10 lowest energy conformers from the global minima are shown in Figure 3 [heavy atom RMSD = 0.48(0.26) Å]. The global minimum conformer is well satisfied with the NOE correlations as indicated above: the corresponding distances are as follows: H-13–H-7 (1.766 Å), H-21–H-15 β (Pro-R) (2.659 Å), H-14–H-9 (2.432 Å), and H-14-H-13 (2.483 Å). Superposition of the X-ray structure and the most energetically stable conformer indicated that each structure was superimposed in fairly good agreement (heavy atom RMSD: 0.753 Å). These results indicated that the conformation in the solution state was, on the whole, homologous to that observed in the solid state.

Vilmorinine A did not show cytotoxic activity (IC₅₀ > 100μ g/mL). The investigation of vilmorinine A in other biological assays is ongoing.

Experimental Section

General Experimental Procedures. The melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. The optical rotation was measured on a JASCO DIP-4 polarimeter. The IR spectrum (KBr) was obtained on a Perkin-Elmer 1710 spectrophotometer. EI, FAB, and high-resolution mass spectra were recorded on a VG Autospec instru-

^{*} To whom correspondence should be addressed. Phone: +81-426-76-3007. Fax: +81-426-77-1436. E-mail: itokawah@ps.toyaku.ac.jp. $^{\otimes}$ Abstract published in Advance ACS Abstracts, June 1, 1997.

Table 1.	¹ H and ¹³ C N	MR Assig	nments for	r Vilmorinine A	(1)
in Pvridir	ne-d5	0			

5		
position	$^{\delta}$ H [int; mult; J (Hz)]	δ_{C}
1		94.90
2		192.57
3	5.88 (1H, br s)	120.06
4		166.35
5	2.51 (1H, dd, 2.3, 11.2)	39.89
6α	1.77 (1H, ddd, 5.4, 11.2, 14.7)	26.11
6β	2.18 (1H, dd, 2.3, 14.7)	
7	5.07 (1H, d, 5.4)	72.13
8		49.27
9	3.62 (1H, s)	46.57
10		40.85
11		177.51
12		178.54
13	3.34 (1H, m)	39.73
14	4.58 (1H, m)	42.20
15α	3.54 (1H, dd, 7.9, 16.3)	32.90
15β	2.84 (1H, dd, 2.5, 16.3)	
16		176.22
17		
18	1.73 (3H, s)	23.07
19	1.65 (3H, s)	17.68
20α	4.41 (1H, d, 10.9)	70.51
20β	4.73 (1H, d, 10.9)	
21	1.32 (3H, d, 7.0)	16.89

Figure 1. Partial structure of vilmorinine A (1). The arrows show ${}^{2}J_{C,H}$ and ${}^{3}J_{C,H}$ correlations in a HMBC spectrum, and the dashed arrows show NOE correlations in a phase-sensitive NOESY spectrum.

Figure 2. ORTEP drawing of vilmorinine A (1).

ment. HPLC was performed on an Inertsil PREP-ODS packed with 10 μ m ODS. TLC was conducted on precoated Kieselgel 60 F₂₅₄ (Art. 5715; Merck), and the spots were detected by spraying with 10% H₂SO₄. ¹H and ¹³C NMR spectra were run in pyridine-*d*₅ using a Bruker AM-400 instrument, with chemical shifts (δ) reported in ppm. The spectra were recorded at 303 K. A phase-sensitive NOESY experiment was acquired with mixing times of 600 ms. The value of the delay to optimize one-bond correlations in the HMQC spectrum and suppress them in the HMBC spectrum was 150 ms, and the evolution delay for long-range couplings in the HMBC spectrum was set to 63 ms.

Plant Material. The cortex of *A. vilmoriniana* were collected from Emeishan, Sichuan Province, People's

Figure 3. Ten lowest energy conformers of vilmorinine A, heavy atom RMSD = 0.48(0.26) Å.

Republic of China, in 1994. The botanical identification was made by Dr. Zhi-Sheng Qiao, Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai, China. A voucher specimen has been deposited in the herbarium of Tokyo University of Pharmacy & Life Science.

Extraction and Isolation. The cortex of *A. vilmoriniana* (7.0 kg) were extracted with hot MeOH (30 L) three times to give a MeOH extract that was treated with $CH_2Cl_2-H_2O$ (1:1). The CH_2Cl_2 -soluble fraction (95.6 g) was subjected to Si gel column chromatography using a CH_2Cl_2 -MeOH gradient system (1:0–0:1) to separate eight fractions. The forth fraction was further subjected to Si gel column chromatography using a *n*-Hex-AcOEt gradient system (20:1–1:1) to separate seven subfractions. The last subfraction was subjected to ODS HPLC with 83% MeOH to give vilmorinine A (1: 23 mg, 0.000 33%).

Vilmorinine A (1): colorless needles; mp 218–221 °C; $[\alpha]^{20}_{\rm D}$ +29.3° (*c* 0.29, MeOH); EIMS *m*/*z* [M]⁺ 408 (7, found [M]⁺ 408.1420, C₂₀H₂₄O₉ requires 408.1427), 390 (33), 372 (75), 362 (31), 354 (63), 328 (62), 244 (93), 228 (100); IR (KBr) $\nu_{\rm max}$ 3450 (OH), 1760 (C=O), 1680, 1560, 1420, 1380, 1180, 1130 cm⁻¹; UV (MeOH) $\lambda_{\rm max}$ 242 nm (log ϵ 3.49).

Crystallographic Analysis of 1. Vilmorinine A was mounted on a Mac Science MXC18 automated diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.541$ 78 Å) at 23 °C. The structure was determined by direct methods using the SIR program,⁹ and the refinement was carried out by full-matrix least-squared methods. The molecular structures determined by these methods are illustrated in Figure 2. Crystal data are follows: molecular formula, C₂₀H₂₄O₉; formula weight, 408; crystal size, 1.00 × 0.10 × 0.10 mm; unit cell dimensions, a = 13.437(8) Å, b = 19.59(1) Å, c = 7.513-(7) Å, V = 1978(2) Å³; crystal system, orthorhombic; space group, P2₁2₁2₁, z = 4, D_{calc} 1.37 g/cm³; total reflections, 2256, R = 0.0552, $R_w = 0.0733$.

Computational Methods. Computer modeling experiments were carried out by using the MacroModel program (version 4.5) on an IRIS 4D computer (Indigo² R4400). Molecular mechanics calculations without any constraints were performed with the MM2* force field with a distance-dependent dielectric, $\epsilon = R_{ij}$. The extended cutoff distances employed were 8 Å for van der Waals, 20 Å for charge/electrostatics, and 10 Å for charge/multipole electrostatics. The obtained structures

were energy minimized by the use of the derivative convergence criteria at a value of 0.001 kJ/Å mol *in vacuo*.

The Monte Carlo calculation was carried out by using the Pseudo Monte Carlo routine. A total 5000 MC steps were performed using X-ray crystal geometry, and each of the resulting conformations was subjected to the energy-minimization calculation. Thirty-one conformers were found within a range of 2 kcal/mol of the lowest energy conformation, followed by semiempirical molecular orbital calculation with the PM3 method.

Acknowledgment. We thank the Ministry of Education, Science and Culture, Japan, for financial support through a Grant-in-Aid for General Scientific Research and Mr. Haruhiko Fukaya for measurement of X-ray data.

References and Notes

- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Tanaka, O. Chem. Lett. 1990, 749–752.
- (2) Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K. Chem. Pharm. Bull. 1992, 40, 1053–1055.
- (3) Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. *Phytochemistry* **1993**, *33*, 691–696.
- (4) Itokawa, H.; Qin, X.-R.; Morita, H.; Takeya, K. J. Nat. Prod. 1993, 56, 1766–1771.
- (5) Takeya, K.; Kobata, H.; Morita, H.; Qin, X.-R.; Itokawa, H. Nat. Med. 1996, 50, 368.
- (6) Goodmann, J. M.; Still, W. C. J. Comput. Chem. 1991, 12, 1110– 1117.
- (7) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. **1990**, *11*, 440–467.
- (8) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221-264.
- (9) Attomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435–436.

NP970064W